Nonroad SCR-Urea Study

Agenda

A Approach for the SCR-Urea Nonroad Study
1 Task 1 – Nonroad Population and Fueling Habits
2 Task 2 – Project NR Urea Consumption 2014-2018
3 Task 3 – Identify Urea Distribution Pathways
4 Task 4 – Update Urea Cost Model
5 Task 5 – Identify Potential Business Cases
6 Task 6 – Competitive Advantage Analysis
7 Task 7 – Critical Path Analysis
Approach for the SCR-Urea Nonroad Study

1. **Task 1 – Nonroad Population and Fueling Habits**
2. **Task 2 – Project NR Urea Consumption 2014-2018**
3. **Task 3 – Identify Urea Distribution Pathways**
4. **Task 4 – Update Urea Cost Model**
5. **Task 5 – Identify Potential Business Cases**
6. **Task 6 – Competitive Advantage Analysis**
7. **Task 7 – Critical Path Analysis**
Having completed studies on the viability of a self-sustaining urea infrastructure for on-road diesel vehicles, the Engine Manufacturers Association (EMA*) and TIAX, LLC (TIAX) work to identify a complimentary infrastructure for nonroad diesel equipment

• Evolution from on-road urea infrastructure likely dependent on the fueling and maintenance habits of nonroad HD diesel equipment
 – Needed to identify the effects of bringing the fuel to the vehicle, rather than the vehicle to the fuel
 – Fuel consumption rates needed to be identified for equipment type, size and market segment

• Annual sales estimate of SCR-urea equipped engines required to determine urea consumption levels
 – Sales projections of equipment less available than for on-road vehicles
 – Engine and equipment sales much more fragmented, making estimates of existing sales difficult to generally analyze

• Impact analysis to previously identified on-road urea infrastructure needed
 – Overall demand increase due to nonroad equipment was unknown
 – Overlap between infrastructures and distribution points identification needed

* Please see a full list of acronyms at the end of this report
TIAX’s previous studies on the feasibility of an SCR-urea infrastructure are used as a starting point for this analysis, and it is assumed that the on-road infrastructure developed in these reports will be complimented by a nonroad SCR-urea infrastructure.

Approach for Nonroad SCR-Urea Study

Work Breakdown Structure

Tasks

Kick-off

Task 1
Characterize Nonroad Vehicle Population and Fueling Habits

Task 2
Project Nonroad Urea Consumption 2013-2018

Task 3
Identify Urea Distribution Pathways from Projected On-Road Infrastructure

Task 4
Update Urea Cost Model

Task 5
Identify Potential Urea Distribution Business Cases

Task 6
Competitive Advantage Analysis of Alternate NOx Technologies

Task 7
Perform Critical Path Analysis for Urea Distribution System

Task 8
Final Report/Presentation
Nonroad SCR-Urea Study

Agenda

A Approach for the SCR-Urea Nonroad Study

1 Task 1 – Nonroad Population and Fueling Habits

2 Task 2 – Project NR Urea Consumption 2014-2018

3 Task 3 – Identify Urea Distribution Pathways

4 Task 4 – Update Urea Cost Model

5 Task 5 – Identify Potential Business Cases

6 Task 6 – Competitive Advantage Analysis

7 Task 7 – Critical Path Analysis
TIAX utilized EPA’s modeled population of diesel equipment 75-750 hp and employed a segmentation to align with fueling practices.
EPA’s model also provided the population breakdown, average load factors, and the average annual hours of use for each equipment type

- NONROAD2005’s technical documents provided equipment population in 2000
 - Population was segmented into 75-100 hp, 100-175 hp, 175-300 hp, 300-600 hp, and 600-750 hp
 - The percentage of equipment by hp bins was held constant over time in predicting future equipment populations

- Activity levels were identified using NONROAD2005
 - Annual hours were defined for each of the equipment type and horsepower bins, though activity level typically equivalent for each horsepower level, changing by equipment type only
 - Annual hours were identified in the technical documents for the year 2000 and these factors were held constant over time

- Load factors were identified using the NONROAD2005 technical documents
 - Load factor is the average amount of power used during operation over the rated power of the piece of equipment i.e., 100 hp average power from a 200 hp tractor = 0.5 load factor
 - Load factors for each of the equipment type and horsepower bins were identified, but again the factors are equivalent for each horsepower level, changing by equipment type only

- Brake specific fuel consumption factor also identified in HP bins

- Stationary prime generators are assumed to have the same activity level, load factor, and brake specific fuel consumption factor as mobile generators

Sources: EPA Nonroad2005; Craig Harvey, EPA
Using EPA’s modeling guidelines, TIAX identified the nonroad diesel consumption distribution

- This results in diesel consumption volumes that are highly dependant on the equipment population and does not take into account efficiency gains.

2014 Nonroad Diesel Consumption

- Construction & Mining: 47.8%
- Agricultural: 32.0%
- Generators: 4.1%
- Recreational: 2.7%
- Forestry: 2.1%
- Commercial Equipment: 1.2%
- Industrial Machinery: 10.0%
- Commercial Equipment: 1.2%

12.0 billion gallons total

- In reality, efficiency gains are made in the equipment’s powertrain, in applying more horsepower to a given task, and in work practices.
- Work habit efficiency advancements in some sectors, like agriculture, are well documented but are not included in EPA’s fuel consumption model.
- Effect of a leveling off of diesel consumption in the agriculture sector would be 11% on overall urea consumption, which is within the range of our high and low urea consumption cases.
- Therefore, we use EPA’s modeled diesel consumption values to define our high consumption case.

Sources: EPA Nonroad2005; Craig Harvey, EPA, ARB’s Offroad Model
Fueling and maintenance practices were investigated for each market segment in order to identify the most likely urea distribution point

- **Common Practices of Construction Equipment**
 - Equipment is fueled once per day
 - Fluids (lube oil, hydraulic, coolant etc) are topped off when equipment is fueled
 - Wet hosing (fueling from mobile fueler) rather than fueling from storage tank is most common
 - On-site tanks not commonly used -- subject to vandalism and present a spill risk
 - Routine maintenance done on 200 hour intervals at construction site or in shop depending on where equipment is at time of service
 - Rental Companies
 - Leasee is responsible for fuel and sometimes fluids
 - Leasor performs routine maintenance (200 hr interval) and repairs

- **Mining Operations Common Practices**
 - Primarily open pit mining
 - Fuel is purchased directly from oil companies and delivered to on-site storage tanks
 - Owned fuel trucks wet hose mining equipment and top off fluids in the field
 - May place temporary skid mounted 10,000 gal fuel tanks in more remote areas of the mine
 - Routine maintenance and repairs are performed in-house
Fueling and maintenance practices characterization (continued)

• Common Practices of Agricultural Equipment
 – Have on-site diesel storage
 – Fuel delivered to on-site storage tanks (smart tanks, on demand, or fixed schedule)
 – Farmer’s fuel/lube truck wet hoses equipment and tops off fluids
 – Routine maintenance performed in-house
 – Ag Supply Co-op (diesel wholesaler) supplies fluids and sometimes fuel

• Industrial Machinery
 – Practices vary between the vocations, but on-site storage is typical throughout
 – Fuel delivered to on-site storage tanks (smart tanks, on demand, or fixed schedule)
 - Tank sizes vary greatly, somewhat proportional to fleet size
 • 100-250 gallon tank typical for Air compressors, pumps, welders
 • 10,000 - 20,000 gallon tanks for Airport GSE, Railway equipment
 – Owner/operator fuels, tops off fluids and performs routine maintenance/repairs

• Electric Power Generators
 – Mobile and prime stationary generators typically used in Construction, Mining, and Forestry or Industrial applications (oil fields)
 – Fueling practices tend to mirror the diesel equipment in the same vocation
 - Construction, Mining and Forestry generators would tend to be wet hosed
 - Industrial applications would tend to have on site fuel storage or separate tanks
 – Fluids topped off by owner/operator
Fueling and maintenance practices characterization (continued)

• Common Practices of Forestry Equipment
 – Generally <10 pieces of equipment on-site at once
 – Fueling
 - Avoid storing large quantities of fuel on-site (fire safety)
 - Jobbers deliver fuel and fluids to home base
 - Equipment wet hosed either by in-house fuel truck or jobber
 – Fluids are topped off daily by in-house maintenance
 – Routine maintenance and repairs done in the field by own mechanics

• And, Commercial Equipment
 – Mainly fueled by owner/operator
 - Large chipper/grinders pulled behind road-crew and commercial landscaping trucks
 - Lawnmowers, turf equipment, snow blowers tend to use portable fuel tanks
 - Tends to use on-road diesel more than other segments
 – Fluids topped off by owner/operator
 – Routine maintenance performed by owner/operator or equipment repair and maintenance shop
Independent Mobile Fuelers, a.k.a. Jobbers, are a primary source of fluid replacement for many fleets

- 7,000 members of National Petroleum Marketer’s Association
 - ~90% of Jobbers are members

- Typical practices
 - Utilize bobtail trucks with capacity of 2,500-5,000 gal
 - Fill once per day and dispense as much of it as possible

- Minimum company size is 3-5 million gal/yr ~ 2-4 trucks per jobber

- Jobbers operating in more remote areas own large storage tanks
 - National Petroleum Marketer’s Assoc. estimates ~ 6000 tanks in U.S. owned by jobbers

- 10-15% of customers also contract for other fluids
A Fuel Flowchart is used to summarize nonroad fueling and maintenance fluid fill practices as identified through research.
Nonroad SCR-Urea Study

Fueling & Maintenance Practices

Task 1

TIAX then estimated future nonroad fueling practices by percentage

- This step helps to align nonroad infrastructure needs with previously developed on-road infrastructure scenarios
- Previous on-road studies all started with a ‘follow the fuel’ methodology

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>Nonroad Diesel Mobile Fueler</th>
<th>Nonroad Fleet On-site Storage</th>
<th>Onroad Diesel Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>Construction & Mining</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Agricultural</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Industrial Machinery</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>Generators</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
</tr>
<tr>
<td>Forestry</td>
<td>85%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Commercial Equipment</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Example, Small Commercial Equipment: 10% + 30% + 60% = 100%

Small = Small Fleets; 10 and fewer units of equipment
Medium = Medium Fleets; 11 to 50 units of equipment
Large = Large Fleets; 51 units or more units of equipment
Agenda

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Approach for the SCR-Urea Nonroad Study</td>
</tr>
<tr>
<td>1</td>
<td>Task 1 – Nonroad Population and Fueling Habits</td>
</tr>
<tr>
<td>2</td>
<td>Task 2 – Project NR Urea Consumption 2014-2018</td>
</tr>
<tr>
<td>3</td>
<td>Task 3 – Identify Urea Distribution Pathways</td>
</tr>
<tr>
<td>4</td>
<td>Task 4 – Update Urea Cost Model</td>
</tr>
<tr>
<td>5</td>
<td>Task 5 – Identify Potential Business Cases</td>
</tr>
<tr>
<td>6</td>
<td>Task 6 – Competitive Advantage Analysis</td>
</tr>
<tr>
<td>7</td>
<td>Task 7 – Critical Path Analysis</td>
</tr>
</tbody>
</table>
New equipment sales numbers were calculated using EPA’s equipment population and lifetimes, with replacement equipment and new equipment in the inventory* identified.

*Does not include recreational vehicles
Diesel consumption from SCR-equipment grows steadily as more and more equipment enter the inventory, while the consumption numbers for all nonroad diesel equipment match EPA’s total consumption for 75-750 hp* NR diesel.

*Includes Mobile and Prime Stationary Generators >750hp
Two urea demand scenarios are calculated using new equipment sales, fuel consumption rates, and estimated urea consumption ratios

• High urea demand scenario includes:
 – Equipment sales and diesel consumption based on EPA’s Nonroad2005 & 100% of the Final Tier 4 equipment from 75-750 hp employing urea-SCR & 2.0% urea consumption ratio = an average engine-out NOx emission rate of ~1.6 g/kWh

• Low urea demand scenario includes:
 – Equipment sales and diesel consumption based on EPA’s Nonroad2005 & 100% of the Final Tier 4 equipment from 75-750 hp employing urea-SCR & 1.0% urea consumption ratio = an average engine-out NOx emission rate of ~0.8 g/kWh
 -OR-
 – Equipment sales and diesel consumption based on EPA’s Nonroad2005 & 50% of the Final Tier 4 equipment from 75-750hp employing urea-SCR & 2.0% urea consumption ratio = an average engine-out NOx emission rate of ~1.6 g/kWh

• Possible realities that lie between our high and low scenarios include:
 – Engines below 100 hp, 33.4% of the equipment population, not employing urea-SCR
 – Diesel consumption flattening in some or all market segments from 2006 levels – about a 41% effect from all segments
 – Average engine-out NOx emissions rates between 0.8 and 1.6 g/kWh
Urea demand for each market segment is estimated for the calendar years 2013 to 2018 using equipment sales estimates and the high and low consumption scenarios.

High Urea Demand by Calendar Year, MMGal

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction & Mining</td>
<td>0.83</td>
<td>9.20</td>
<td>17.35</td>
<td>25.32</td>
<td>33.09</td>
<td>40.64</td>
</tr>
<tr>
<td>Agricultural</td>
<td>0.47</td>
<td>5.28</td>
<td>10.13</td>
<td>15.03</td>
<td>19.99</td>
<td>24.99</td>
</tr>
<tr>
<td>Industrial Machinery</td>
<td>0.15</td>
<td>1.69</td>
<td>3.24</td>
<td>4.80</td>
<td>6.39</td>
<td>7.98</td>
</tr>
<tr>
<td>Generators</td>
<td>0.03</td>
<td>0.36</td>
<td>0.69</td>
<td>1.02</td>
<td>1.36</td>
<td>1.69</td>
</tr>
<tr>
<td>Forestry</td>
<td>0.03</td>
<td>0.35</td>
<td>0.68</td>
<td>1.01</td>
<td>1.34</td>
<td>1.67</td>
</tr>
<tr>
<td>Commercial Equipment</td>
<td>0.02</td>
<td>0.21</td>
<td>0.39</td>
<td>0.59</td>
<td>0.78</td>
<td>0.97</td>
</tr>
<tr>
<td>total</td>
<td>1.53</td>
<td>17.07</td>
<td>32.48</td>
<td>47.77</td>
<td>62.94</td>
<td>77.95</td>
</tr>
</tbody>
</table>

Low Urea Demand by Calendar Year, MMGal

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction & Mining</td>
<td>0.41</td>
<td>4.60</td>
<td>8.68</td>
<td>12.66</td>
<td>16.54</td>
<td>20.32</td>
</tr>
<tr>
<td>Agricultural</td>
<td>0.24</td>
<td>2.64</td>
<td>5.06</td>
<td>7.52</td>
<td>10.00</td>
<td>12.50</td>
</tr>
<tr>
<td>Industrial Machinery</td>
<td>0.08</td>
<td>0.84</td>
<td>1.62</td>
<td>2.40</td>
<td>3.19</td>
<td>3.99</td>
</tr>
<tr>
<td>Generators</td>
<td>0.02</td>
<td>0.18</td>
<td>0.34</td>
<td>0.51</td>
<td>0.68</td>
<td>0.85</td>
</tr>
<tr>
<td>Forestry</td>
<td>0.02</td>
<td>0.18</td>
<td>0.34</td>
<td>0.50</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>Commercial Equipment</td>
<td>0.01</td>
<td>0.10</td>
<td>0.20</td>
<td>0.29</td>
<td>0.39</td>
<td>0.49</td>
</tr>
<tr>
<td>total</td>
<td>0.76</td>
<td>8.54</td>
<td>16.24</td>
<td>23.88</td>
<td>31.47</td>
<td>38.98</td>
</tr>
</tbody>
</table>
Comparison between the nonroad urea high case consumption estimate* and the on-road high-case scenario shows a significant difference in urea demand for the analyzed years.

*Stationary Generators >600hp are assumed to use existing stationary and on-road infrastructure prior to 2013
Identification of nonroad urea distribution points started by strategically adding distribution points along the Fuel Flowchart.
In most cases, several SCR-equipped engines would be needed in order to have demand greater than 50 gal/month and make on-site storage viable

- TIAX calculated the average number of SCR-equipped engines by market segment and fleet size
- Large fleets will rapidly acquire multiple pieces of SCR equipment
- Medium-sized fleets have at least one piece of equipment early, but only heaviest consumers will require on-site storage
- On-storage for small fleets, where > 75% of the equipment will reside, is not feasible until well after 2018

Average Number of SCR-equipped Engines by Market Segment and Fleet Size

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>M</td>
<td>L</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>Construction & Mining</td>
<td>0.2</td>
<td>1.5</td>
<td>8.5</td>
<td>0.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Agricultural</td>
<td>0.2</td>
<td>1.6</td>
<td>5.2</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Industrial Machinery</td>
<td>0.1</td>
<td>1.2</td>
<td>4.8</td>
<td>0.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Generators</td>
<td>0.1</td>
<td>0.5</td>
<td>3.6</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Forestry</td>
<td>0.2</td>
<td>1.7</td>
<td>9.7</td>
<td>0.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Commercial Equipment</td>
<td>0.2</td>
<td>1.1</td>
<td>5.7</td>
<td>0.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

S = Small Fleets; 10 & fewer units
M = Medium Fleets; 11 to 50 units
L = Large Fleets; greater than 50 units

Sources: EPA Nonroad2005; PSR’s PARTSLINK™ database
Based on average monthly consumption, TIAK estimates what fraction of fleets will choose on-site urea storage

- Assume that both diesel wholesalers and on-road retailers will be able to offer urea at a lower price point (in $/gallon) than those storing small quantities.
- Out of convenience, some fleets with < 50 gallons/month of urea consumption may purchase barrels and store on-site. This is most likely to occur in the agricultural sector where seasonal effects could result in the need for on-site storage during the high season while annual monthly average would be < 50 gal/month.
- Other retailers include on-road retail locations, nonroad equipment dealers and nonroad repair centers.

Urea Distribution Preference by Fleet Demand

<table>
<thead>
<tr>
<th>Urea Demand (gal/month)</th>
<th>Diesel Wholesaler</th>
<th>On-site Storage</th>
<th>Other Retail</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25</td>
<td>40%</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>25 - 50</td>
<td>30%</td>
<td>25%</td>
<td>45%</td>
</tr>
<tr>
<td>50 - 95</td>
<td>15%</td>
<td>75%</td>
<td>10%</td>
</tr>
<tr>
<td>> 95</td>
<td>5%</td>
<td>90%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Next, we identify the urea distribution point for fleets that utilize an independent mobile fueler, a.k.a. jobber, for diesel delivery

- Assume that jobbers will primarily purchases urea from a diesel wholesaler
 - This pathway would tend to be the most convenient
 - On-road retail locations will continue to have a price advantage, because of their overall higher throughput levels
- Some fleets will receive fuel through the jobber but purchase fluids from another source
 - Filling a storage container on a maintenance truck or in the back of a pick-up
 - Low volume users will utilize lower-priced on-road retailers when convenient
- Estimate of jobber fleets using the diesel wholesaler as a urea source vs. other retail locations made independent of fleet size

<table>
<thead>
<tr>
<th>Urea Distribution Preference by Fleets Utilizing Mobile Fueler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleets using Mobile Fueler</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The addition of on-road and nonroad retail locations illustrates the distribution of urea through all points.
The amount of nonroad urea distributed through equipment dealers, repair centers, and on-road retail is estimated by market segment and fleet size

- Nonroad equipment dealers will supply urea to new owner by filling urea tank and supplying take home containers
 - 2014: 10% for those equipment in small fleets, 5% for medium and large fleets
 - 2018: As nonroad infrastructure matures, market share for dealers is halved

- Nonroad repair centers would be the last to join retail chain
 - Industrial machinery and commercial equipment most likely to use repair centers
 - Estimates between are made for 2014, expected to double by 2018
 - Repair centers identified are in addition to the equipment dealer locations

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>NR Equipment Dealer</th>
<th>NR Repair Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td>Construction & Mining</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Agricultural</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Industrial Machinery</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Generators</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Forestry</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Commercial Equipment</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Remaining demand for each market segment / fleet size will be met by on-road retail locations
Overall urea demand for the nonroad sector is segmented among the distribution locations in the years 2014 and 2018

<table>
<thead>
<tr>
<th>Nonroad Distribution Locations</th>
<th>% of Urea Sales for Nonroad Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014</td>
</tr>
<tr>
<td>Onroad Retail Locations</td>
<td>43.7%</td>
</tr>
<tr>
<td>Nonroad Diesel Wholesalers</td>
<td>40.9%</td>
</tr>
<tr>
<td>Nonroad Equipment Dealers</td>
<td>8.6%</td>
</tr>
<tr>
<td>Nonroad Equipment Repair Center</td>
<td>4.1%</td>
</tr>
<tr>
<td>Nonroad Fleet Locations</td>
<td>2.7%</td>
</tr>
</tbody>
</table>
Urea demand for the non-road sector divided among all non-road distribution points yields low throughput levels through 2018

<table>
<thead>
<tr>
<th>Nonroad Distribution Locations</th>
<th>Number of Locations</th>
<th>% of Urea Sales for Nonroad Sector</th>
<th>Monthly Urea Throughput from Nonroad Sector (gallons/location)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014</td>
<td>2018</td>
<td>2014</td>
</tr>
<tr>
<td>Onroad Retail Locations</td>
<td>47,757</td>
<td>57,725</td>
<td>43.7%</td>
</tr>
<tr>
<td>Nonroad Diesel Wholesalers</td>
<td>6,800</td>
<td>8,000</td>
<td>40.9%</td>
</tr>
<tr>
<td>Nonroad Equipment Dealers</td>
<td>7,798</td>
<td>9,174</td>
<td>8.6%</td>
</tr>
<tr>
<td>Nonroad Equipment Repair Center</td>
<td>6,114</td>
<td>12,228</td>
<td>4.1%</td>
</tr>
<tr>
<td>Nonroad Fleet Locations</td>
<td>731</td>
<td>3,396</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Estimated throughput levels would require only 1 to 2 totes per month in 2018 in the highest throughput locations
Nonroad SCR-Urea Study

Agenda

1. **Approach for the SCR-Urea Nonroad Study**
2. **Task 1 – Nonroad Population and Fueling Habits**
3. **Task 2 – Project NR Urea Consumption 2014-2018**
4. **Task 3 – Identify Urea Distribution Pathways**
5. **Task 4 – Update Urea Cost Model**
6. **Task 5 – Identify Potential Business Cases**
7. **Task 6 – Competitive Advantage Analysis**
8. **Task 7 – Critical Path Analysis**
Key pathways for SCR-urea distribution identified in the on-road infrastructure study remain viable for nonroad applications.

CDF Producing 32.5% Urea Solution For Mobile SCR

- **Pathway 1**
 - **Pathway 1a Infrastructure**
 - Sales > 2500 gal/month
 - Facility installs permanent UST/AST and dispensing system
 - **Pathway 1b Stillages**
 - Sales 500-7,500 gal/month
 - Facility utilizes purchased, refillable dispensing systems

- **Pathway 2**
 - **Pathway 2a Totes**
 - Sales < 500 gal/month
 - Retail site uses totes that are dropped off full, replaced when empty
 - **Pathway 2b Bottles**
 - Sales < 50 gal/month
 - Retail site uses bottles and/or sells bottles to customers

Source: EMA Study 2006
U.S. urea consumption of all grades, including fertilizer, is supported by domestic and world urea producers

- Urea production and import levels are heavily influenced by the price of natural gas, the main feedstock for urea production
- Rise in domestic natural gas prices leads to increased urea imports
- Roughly one-half of current domestic consumption is foreign urea imported by domestic distributors
- SCR-urea will likely come from domestic suppliers of concentrated solution rather than imported granular urea
- SCR-urea will likely need a separate and distinct supply chain from fertilizer grade urea
- Sufficient worldwide urea production capacity exists to meet U.S. on-road SCR-urea demand

Urea Production and Distribution

<table>
<thead>
<tr>
<th></th>
<th>Million short tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Urea Grades</td>
<td></td>
</tr>
<tr>
<td>WORLD(^1)</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>137</td>
</tr>
<tr>
<td>Production</td>
<td>138</td>
</tr>
<tr>
<td>Capacity</td>
<td>162</td>
</tr>
<tr>
<td>DOMESTIC (U.S.)(^1)</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>12.4</td>
</tr>
<tr>
<td>Production</td>
<td>6.0</td>
</tr>
<tr>
<td>Capacity</td>
<td>8.2</td>
</tr>
<tr>
<td>Projected 2015 U.S. On Road Diesel Vehicle</td>
<td></td>
</tr>
<tr>
<td>Urea Demand</td>
<td>0.6(^2)</td>
</tr>
<tr>
<td>Projected 2015 U.S. Nonroad Equipment</td>
<td></td>
</tr>
<tr>
<td>Urea Demand</td>
<td>0.05(^3)</td>
</tr>
</tbody>
</table>

1. British Sulphur Consultants, CRU Group for 2005
2. Equivalent to 400 Million gallons 32.5% soln
3. Equivalent to 32.5 Million gallons 32.5% soln

Sources: British Sulphur Consultants, EMA Study 2006
The model assumes cost same as 5K/month retail station
Previous on-road cost model build-up used
- Cost = $1.08/gal urea solution (A)

Assume 256 gal heated* recyclable tote with pump
- Cost = $0.20/gal urea tote (B)
- Expected packager profit mark-up = $1.02 to $1.17 per gal product urea (C)

Transportation of packaged urea to retailer
- Cost = $0.16/gal packaged urea (D)

Storage & marketing at a 145 gal/month station
- Cost = $0.10/gal product urea (E)
- Expected retail profit mark-up = $0.59 to $0.72 per gal (F)

The cost model does not include mark-ups; mark-ups were added here for illustration

Average Expected Price = (A) + (B) + (C) + (D) + (E) + (F) = 3.19 to 3.45 $/gal

* - Totes or barrels would likely be heated externally using a heated blanket or heating element and a constant recirculation pump in needed applications only
Projected prices and cross-over points previously identified show the need for stillages starting at 500 gal/month, with infrastructure not viable until 2,250 gal/month.

NOTES
1. Pathway 1a and 1b prices include a $0.32 markup split between the CDF and the retailer.
2. Pathway 1a assumes a 5500 gallon tank
3. Pathway 1b assumes a 1300 gallon stillage
4. Assumes 200 $/ton urea FOB

Source: EMA Study 2006
Nonroad SCR-Urea Study
Cost Model

Task 4

Example Scenario:
Jobber purchasing urea from a diesel wholesaler with 145 gal/month throughput and 256 gal tote dispenser

- **Product Packager Storage & Dispensing**
 - The model assumes cost same as 5K/month retail station
 - See previous cost model example for build-up
 - **Cost = $1.08/gal urea solution (A)**

- **Product Packaging**
 - Assume 250-280 gal heated* recyclable tote with pump
 - **Cost = $0.20/gal urea tote (B)**
 - Expected packager profit mark-up = $1.02 to $1.17 per gal product urea (C)

- **Transport To Retail**
 - Transportation of packaged urea to retailer
 - **Cost = $0.16/gal packaged urea (D)**

- **Retail Station Storage & Marketing**
 - Storage & marketing at a 145 gal/month station
 - **Cost = $0.10/gal product urea (E)**
 - Expected retail profit mark-up = $ 0.59 to $0.72 per gal (F)

- **Jobber Delivery to Equipment**
 - Rack to Retail Margins for less than 1,000 gal
 - **Cost = $0.20/gal product urea (G)**
 - Expected jobber profit mark-up = $ 0.50 to $1.00 per gal (H)

Average Expected Price = (A) + (B) + (C) + (D) + (E) + (F) + (G) + (H) = 3.89 to 4.65 $/gal

* - Totes or barrels would likely be heated externally using a heated blanket or heating element and a constant recirculation pump in needed applications only

Document Code: D.5535
Projected price increase for fleets that will utilize a jobber is shown in the dashed lines for each distribution pathway

- Throughput at diesel wholesalers will support totes, so initial cost to jobbers will reflect low volume pathways without much room for mark-up

- As urea demand increases, jobbers will seek higher volume pathways for filling their intermediate containers to make urea delivery more profitable
Agenda

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Approach for the SCR-Urea Nonroad Study</td>
</tr>
<tr>
<td>1</td>
<td>Task 1 – Nonroad Population and Fueling Habits</td>
</tr>
<tr>
<td>2</td>
<td>Task 2 – Project NR Urea Consumption 2014-2018</td>
</tr>
<tr>
<td>3</td>
<td>Task 3 – Identify Urea Distribution Pathways</td>
</tr>
<tr>
<td>4</td>
<td>Task 4 – Update Urea Cost Model</td>
</tr>
<tr>
<td>5</td>
<td>Task 5 – Identify Potential Business Cases</td>
</tr>
<tr>
<td>6</td>
<td>Task 6 – Competitive Advantage Analysis</td>
</tr>
<tr>
<td>7</td>
<td>Task 7 – Critical Path Analysis</td>
</tr>
</tbody>
</table>
The average monthly throughput for each nonroad distribution location category is estimated to identify the likely distribution pathway.
Potential urea volume for nonroad equipment is segmented among the pathways for projection of cost

- Throughput levels at nonroad equipment dealers and repair centers dictate that bottles would be used at these locations
- Barrels and totes are expected to be used at nonroad diesel wholesalers and for on site storage at the fleet locations
- Nonroad urea demand on the on-road infrastructure is not expected to make a significant impact on the throughput levels and therefore the cost at these locations

<table>
<thead>
<tr>
<th>Year</th>
<th>Urea Scenario</th>
<th>Distribution of Nonroad Urea (million gallons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>On-road</td>
</tr>
<tr>
<td>2014</td>
<td>Low</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>7.6</td>
</tr>
<tr>
<td>2018</td>
<td>Low</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>33.1</td>
</tr>
</tbody>
</table>
Price comparison of on-road retail locations and nonroad retail locations shows the price advantage due to higher throughput levels

- On-road retail price range includes locations with tanks, stillages, totes/barrels, and bottles
- Non-road locations are expected to only employ totes/barrels and bottles in the 2014-2018 time period
- Weighted average price is based on the distribution method by volume

<table>
<thead>
<tr>
<th></th>
<th>Distributed Price ($/gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-road Retail Location</td>
</tr>
<tr>
<td>Range</td>
<td>$1.10 - $7.50</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>$2.34</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>A</td>
<td>Approach for the SCR-Urea Nonroad Study</td>
</tr>
<tr>
<td>1</td>
<td>Task 1 – Nonroad Population and Fueling Habits</td>
</tr>
<tr>
<td>2</td>
<td>Task 2 – Project NR Urea Consumption 2014-2018</td>
</tr>
<tr>
<td>3</td>
<td>Task 3 – Identify Urea Distribution Pathways</td>
</tr>
<tr>
<td>4</td>
<td>Task 4 – Update Urea Cost Model</td>
</tr>
<tr>
<td>5</td>
<td>Task 5 – Identify Potential Business Cases</td>
</tr>
<tr>
<td>6</td>
<td>Task 6 – Competitive Advantage Analysis</td>
</tr>
<tr>
<td>7</td>
<td>Task 7 – Critical Path Analysis</td>
</tr>
</tbody>
</table>
The urea-SCR solution is projected to have an operating price advantage over alternative technologies that have a fuel economy penalty

- Annual cost analysis uses average population and use factors by market sector
- Assumes capital, replacement, and maintenance costs to be roughly equivalent
- 5% fuel economy difference estimated by TIAX

<table>
<thead>
<tr>
<th></th>
<th>Agricultural Equipment</th>
<th>Construction and Mining</th>
<th>Industrial Machinery</th>
<th>Commercial Equipment</th>
<th>Forestry Equipment</th>
<th>Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea Consumption %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2% (High scenario consumption)</td>
</tr>
<tr>
<td>Average Urea Cost $/gal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2-34 - $4.25 (On-road retail average price vs. Nonroad average price)</td>
</tr>
<tr>
<td>Projected Urea Cost $/year/equipment</td>
<td>$100 - $180</td>
<td>$230 - $410</td>
<td>$160 - $280</td>
<td>$120 - $220</td>
<td>$500 - $900</td>
<td>$100 - $180</td>
</tr>
<tr>
<td>Alternative Technology Fuel Economy Difference %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 % (TIAX estimate)</td>
</tr>
<tr>
<td>Ave. Diesel Cost $/gal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1.89 - $2.94 (EIA projected price in 2014 vs. Today's price)</td>
</tr>
<tr>
<td>Alternative Technology Cost $/year/equipment</td>
<td>$200 - $260</td>
<td>$460 - $600</td>
<td>$320 - $410</td>
<td>$240 - $320</td>
<td>$1000 - $1310</td>
<td>$190 - $260</td>
</tr>
</tbody>
</table>
Nonroad SCR-Urea Study

Agenda

- **A** Approach for the SCR-Urea Nonroad Study
- **1** Task 1 – Nonroad Population and Fueling Habits
- **2** Task 2 – Project NR Urea Consumption 2014-2018
- **3** Task 3 – Identify Urea Distribution Pathways
- **4** Task 4 – Update Urea Cost Model
- **5** Task 5 – Identify Potential Business Cases
- **6** Task 6 – Competitive Advantage Analysis
- **7** Task 7 – Critical Path Analysis
An estimation of the nonroad urea throughput levels and number of locations for all distribution points is identified

<table>
<thead>
<tr>
<th>Nonroad Distribution Locations</th>
<th>Number of Locations</th>
<th>% of Urea Sales for Nonroad</th>
<th>2014</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-road Retail (ON)</td>
<td>47,757</td>
<td>43.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Wholesalers (DW)</td>
<td>6,800</td>
<td>40.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Dealers (ED)</td>
<td>7,798</td>
<td>8.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair Centers (RC)</td>
<td>6,114</td>
<td>4.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet Locations (FL)</td>
<td>731</td>
<td>2.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nonroad Urea Throughput (gal/month)

<table>
<thead>
<tr>
<th>Nonroad Urea Throughput (gal/month)</th>
<th>Number of Locations in 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottles</td>
<td>Totes/Barrels</td>
</tr>
<tr>
<td>500 - 250</td>
<td></td>
</tr>
<tr>
<td>250 - 50</td>
<td></td>
</tr>
<tr>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>Total Sites</td>
<td>36,157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonroad Urea Throughput (gal/month)</th>
<th>Number of Locations in 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottles</td>
<td>Totes/Barrels</td>
</tr>
<tr>
<td>500 - 250</td>
<td></td>
</tr>
<tr>
<td>250 - 50</td>
<td></td>
</tr>
<tr>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>Total Sites</td>
<td>48,096</td>
</tr>
</tbody>
</table>

Source: EMA Study 2006
The average nonroad urea monthly throughput for each distribution location is estimated to identify the potential impacts.

Source: EMA Study 2006
The volume increase due to the nonroad demand at HD fueling stations should have no impact on the choice of infrastructure investment needed.

- Extra-extra large (XXL), extra large (XL), and large (L) sized HD fueling stations will employ storage tanks for distribution of urea
 - 5,500 gal. tanks appear to be the most economic choice in all cases
 - Both above ground and below ground tanks will be used, dictated by the environmental conditions of the location and the pumping method
 - Average monthly throughput is greater than 4,000 gal in 2015 and 6,000 gal in 2018; average non-road volume increase is 115 gal in 2015 and 490 gal in 2018

- Medium large (ML), medium (M), and medium small (MS), sized HD fueling stations will employ stillages for distribution of urea
 - 1,300 gal stillages appear to be the most economic choice in all cases
 - Some ML stations may transition to tanks in the 2015 timeframe
 - Average monthly throughput is greater than 700 gal in 2015 and 1,000 gal in 2018; average non-road volume increase is 20 gal in 2015 and 75 gal in 2018

- Small (S) HD fueling stations will employ totes for distribution of urea
 - These stations may require addition totes or deliveries in order to meet increased demand of 20 gallons/month in 2018
Nonroad urea demand at LD retail locations will need to be met with an increase containers at those locations.

- Chain service stations (e.g., Jiffy Lube) will compete with LD dealers for the oil change services to the new diesel vehicle and will therefore be first to distribute urea
 - Barrels and totes are most economical for these locations given the higher throughput than other LD locations

- Light-duty diesel fueling stations be an essential element in the infrastructure coverage requirement
 - There is not a good case for the market to support the large number of these locations and retailers will likely need to be subsidized in some way
 - Smallest package possible (1 gallon bottles?) would be used at first because of shelf space, may transition to barrels or totes by 2014

- Auto part stores (e.g., Napa) and mass merchants (e.g., Wal-Mart) will stock bottles to fill customer demand as they do with other auto. fluids
 - Bottles will be used at all throughput levels because of the Do-It-Yourself market segment that is being supplied (i.e., people filling up on their own)
Tote and barrel manufacturers must be made aware of the expected increase in the number of totes needed to support the nonroad urea market

- Previously estimated range due to on-road urea demand
- Approximately 70% increase in number of totes needed in 2018 for all mobile equipment
- The number of totes is estimated by assuming a 50-50 split with barrels in pathway 2a and is a function of both urea throughput in the pathway and the number of retail locations
- The range of units corresponds to the low and high urea consumption forecasts

On-road Urea Demand Only

Urea Demand for All Mobile Sources

Note: 264 gallon (1000L) tote was used as estimate based on European experience, other sizes may be applicable to NA market

Source: EMA Study 2006
Bottlers will also need to be made aware of the expected increase in the number of bottles needed to support the nonroad urea market

- Approximately 70% increase needed in 2018 for all mobile equipment above previous demand for on-road urea
- The estimated number of bottles is a function of both urea throughput in the pathway and the number of retail locations
- The range of units corresponds to the low and high urea consumption forecasts
- Increase in the number of bottles may have the most impact since they may tend to be recycled (or refilled) much less often than totes or barrels

Source: EMA Study 2006
Intermediate storage containers, probably between 1-5 gallons, will likely be prevalent in the distribution of urea to the nonroad market

• Overall volume of bottles needed will depend on if or how often the bottles will be refilled by the equipment operator at a lower priced retail location, i.e. tank, stillage, tote, or barrel

• In all urea pathways other than the retail bottle, an intermediate container would likely be needed:
 – The large farmer with on-site storage will need to bring urea to the equipment from the tote or barrel back at the garage
 – The jobber (independent or company owned) will need to store urea on the fuel truck in a container smaller than a 55 gallon drum
 – The smaller fleet owner will need to transport urea from the point of purchase to the equipment

• Therefore, there might be a need for formal guidance on acceptable refillable containers for urea storage and transport
Milestones along the path to an SCR-urea infrastructure

- **2006**: EPA releases SCR Draft Guidance Document
- **2007**: EMA and AAM make separate agreements with EPA on terms of SCR use
- **2009**: Strong signals sent to downstream stakeholders about impending need for SCR urea infrastructure
- **2010**: Secure commitments from on-road retail locations to provide urea in 2010
- **2011**: Engine manufacturers commit to SCR urea for nonroad Engines
- **2012**: Introduction of SCR Urea on 175-750hp NR engines
- **2013**: Nonroad SCR urea infrastructure fully implemented
- **2014**: Nonroad SCR-Urea Study Critical Path Analysis

Milestone Details

- **2006**: Retailers procure stillages and permits
- **2007**: Construction begins at distribution facilities
- **2009**: On-road retailers procure totes, barrels, bottles
- **2010**: Nonroad retailers procure totes, barrels, bottles
- **2011**: Production increase commitments from tote, barrel and bottle manufacturers
- **2013**: Secure commitments from nonroad retail locations to provide urea in 2014
- **2014**: On-road SCR urea infrastructure fully implemented

Tasks

- **Task 7**: Retail vendors, distributors and urea manufacturers begin planning
- **Task 8**: Manufacturing construction for totes, stillages and bottles
- **Task 9**: Construction lead-time activities begin at retail fueling stations
- **Task 10**: Retailers procure stillages and permits
- **Task 11**: Engine manufacturers commit to SCR urea for nonroad Engines
- **Task 12**: Secure commitments from nonroad retail locations to provide urea in 2014
The following acronyms are used throughout the report

- AAM – Alliance of Automotive Manufacturers
- ARB – California Air Resources Board
- UST/AST – Underground/Above-ground Storage Tank
- BSFC – Brake Specific Fuel Consumption
- CDF – Central Distribution Facility
- EIA – US Energy Information Administration
- EMA – Engine Manufacturers Association
- EPA – US Environmental Protection Agency
- FOB – Free On Board, delivered price
- GSE – Ground Support Equipment
- HD – Heavy Duty
- HDD – Heavy Duty Diesel
- HP – Horsepower
- LD – Light Duty
- LDD – Light Duty Diesel
- MMgal – Million gallons
- NOx – Oxides of Nitrogen
- NR – Nonroad
- NREL – National Renewable Energy Laboratory
- PSR – Power Systems Research
- SCR – Selective Catalytic Reduction
- ULSD – Ultra Low Sulfur Diesel