

Nonroad SCR-Urea Study Executive Summary

Engine Manufacturers Association

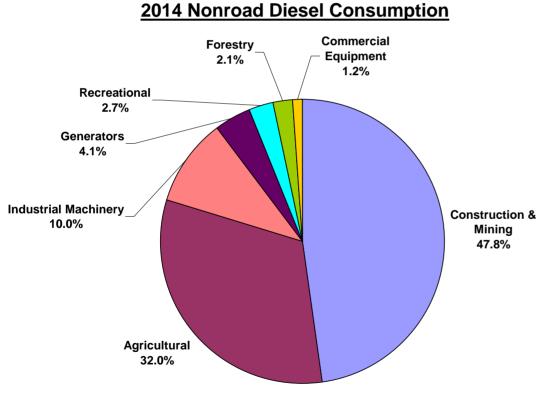
July 29, 2007

Raymond Schubert – Case Manager <u>schubert.raymond@tiaxllc.com</u>

Jennifer Pont pont.jennifer@tiaxllc.com

TIAX, LLC 1601 S. De Anza Blvd, Suite 100 Cupertino, California 95014-5363

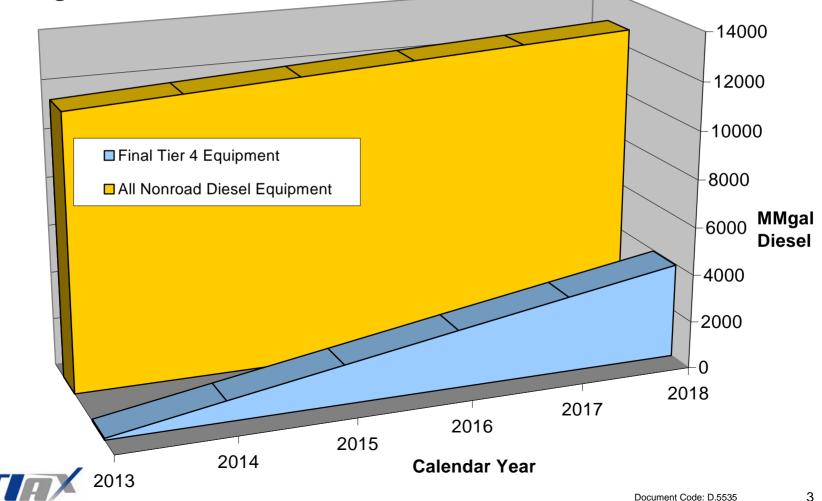
Reference: D.5535


Given an existing urea infrastructure for on-road vehicles, it is economically feasible to provide urea to Final Tier 4 nonroad diesel equipment

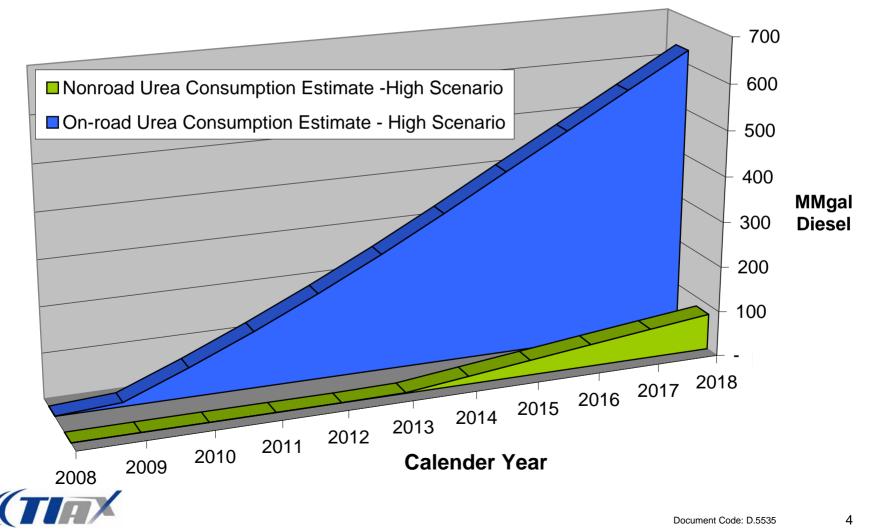
- Nonroad urea demand will be much lower than that for on-road vehicles and will not significantly impact a previously developed infrastructure
- Delivery methods and packaging requirements identified for the on-road infrastructure are applicable to the nonroad market
- Convenient distribution points will be added to deliver urea to a more fragmented market; convenience will come at a price since locations with higher urea throughput levels have a cost advantage
- The largest impact of the nonroad urea demand would be the required increase of recyclable urea totes, barrels, and bottles
- For both on-road and nonroad segments, approved intermediate storage containers will be required to ensure urea quality in the distribution chain
- Urea selective catalytic reduction (SCR*) has an operational cost advantage over other emission control solutions
- Implementation milestones for a nonroad urea infrastructure are an extension of previously identified on-road infrastructure milestones

1

TIAX projected nonroad diesel consumption of 12.0 billion gallons in 2014 compared to 41.5 billion gallons for on-road vehicles


12.0 billion gallons total

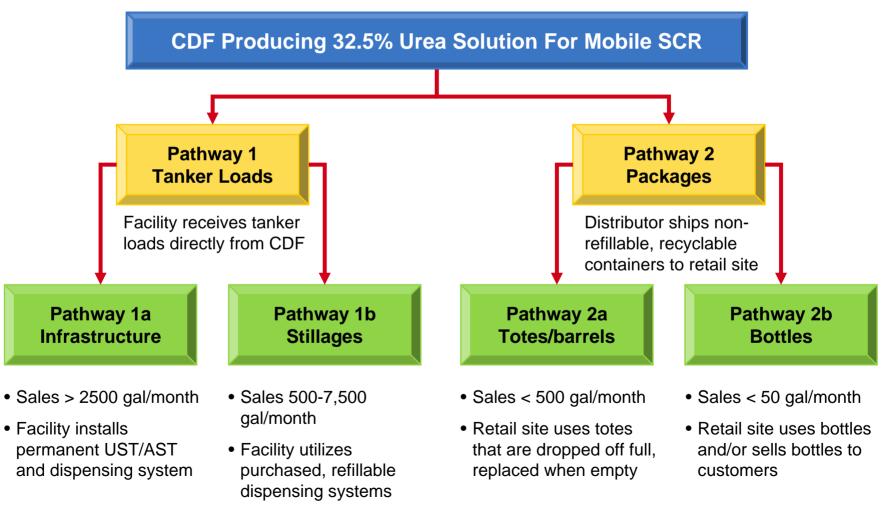
- Using EPA's models, TIAX projected the nonroad diesel consumption and distribution by market sector
- The nonroad diesel consumption depends on the equipment population and does not take into account efficiency gains
- In reality, efficiency gains are made in equipment powertrains and in work practices
 - Therefore, we use EPA's modeled diesel consumption values to define our high diesel consumption case



2

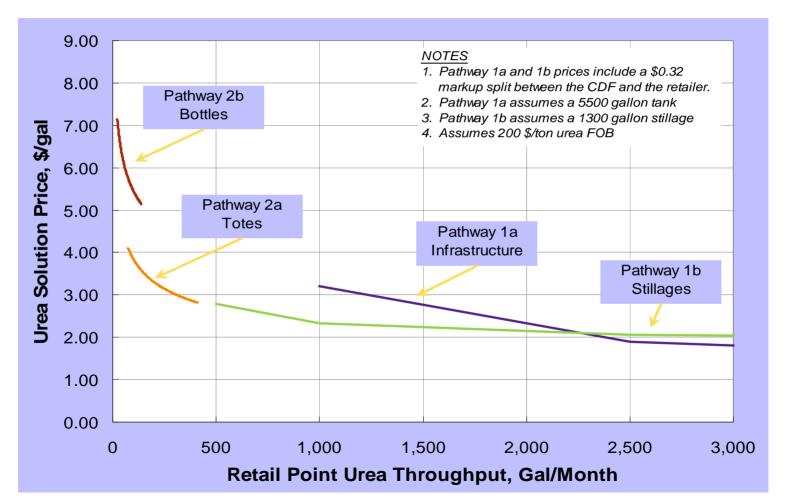
Diesel consumed by Final Tier 4 equipment is a small portion of the annual consumption of the nonroad segment within the study period. Urea consumption is expected to be between 1 - 2 % of diesel consumption in these engines.

Overall nonroad urea consumption estimate is not large enough to significantly impact an existing on-road infrastructure during the study period


The majority of nonroad urea volume is projected to come from on-road retail locations but average throughput will be low

- During the study period, large on-road retail locations could expect to increase throughput volume by 3% in 2014 and 8% in 2018
- Overall average throughput increase to on-road locations is much smaller due to the majority of the locations supplying a few additional gallons via bottles
- Nonroad urea demand divided among all non-road distribution points requires only 2 totes per month in 2018 in the highest throughput locations

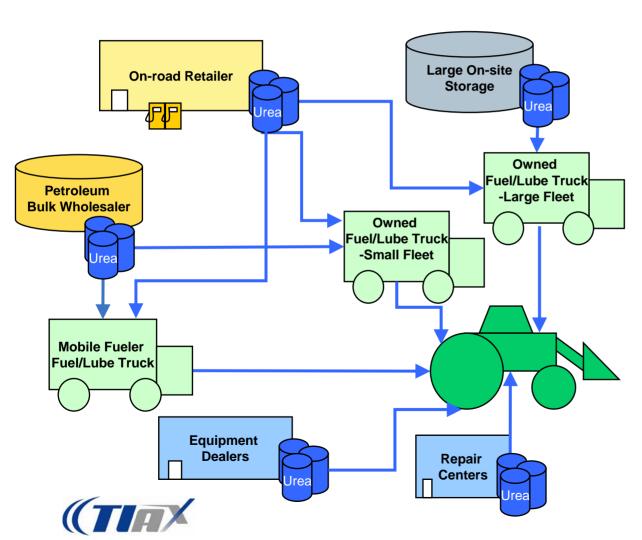
Nonroad Distribution Locations	Number of Locations		% of Urea Sales for Nonroad Sector		Average Monthly Urea Throughput from Nonroad Sector (gallons/location)	
	2014	2018	2014	2018	2014	2018
On-road Retail Locations	47,757	57,725	43.7%	41.9%	10	36
Nonroad Diesel Wholesalers	6,800	8,000	40.9%	39.4%	65	243
Nonroad Equipment Dealers	7,798	9,174	8.6%	4.3%	12	23
Nonroad Equipment Repair Center	6,114	12,228	4.1%	8.3%	7	33
Nonroad Fleet Locations	731	3,396	2.7%	6.2%	40	91



Key distribution pathways and packaging identified in the on-road infrastructure study remain viable for nonroad applications

Source: EMA Study 2006

Distribution pathway and price are dependent on throughput volume at each distribution location



Note: For direct comparison to on-road urea, prices are shown without mobile fueler delivery charge, which is expected to be between \$0.50 & \$1.00/gallon

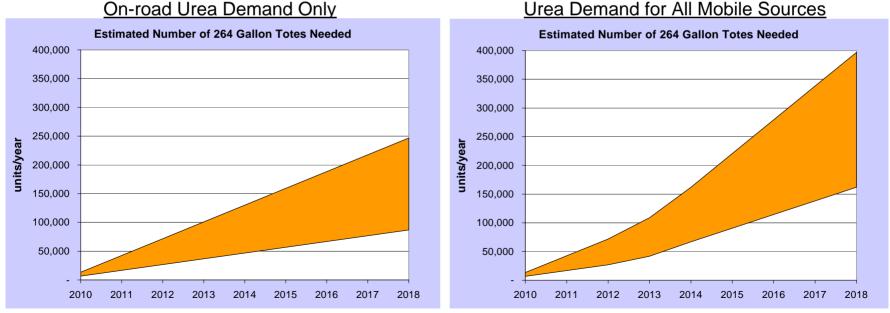
Source: EMA Study 2006

Points of convenience will be added to make urea available to the nonroad market, since bringing equipment to filling location is not always possible

- Bulk petroleum wholesalers, central to the distribution of non-road diesel fuel, are most likely location for high urea throughput
- Largest fleets with on-site fuel storage will store urea on-site because of their high consumption rates
- Equipment dealers and repair centers will fill urea tanks on the equipment they contact and sell small quantities to new owners
- Existing, on-road retail locations will more easily handle volume increases resulting from demand growth

Price comparison of on-road retail locations and nonroad retail locations shows the price advantage of higher throughput locations

- On-road retail price range includes locations with tanks, stillages, totes/barrels, and bottles
- Non-road locations are expected to only employ totes/barrels and bottles in the 2014-2018 time period
- 'Convenience locations', or locations that carry urea to ensure distribution coverage without significant throughput, are expected to have similar delivery method and prices, whether they supply on-road or nonroad urea needs
- Weighted average price is based on the distribution method by volume


	Distributed Price (\$/gallon)				
	On-road Retail Location	Nonroad Location			
Range	\$1.10 - \$7.50	\$3.20 - \$7.50			
Weighted Average	\$2.34	\$4.25			

9

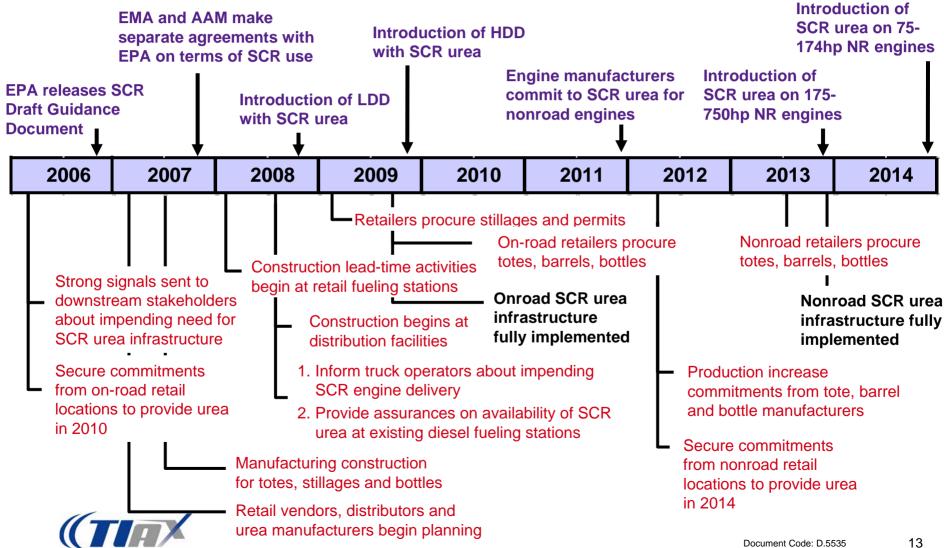
Largest impact to an existing infrastructure would be the required increase in the number of recyclable packages to support the nonroad urea market

- Approximately 70% increase in number of totes, barrels and bottles needed in 2018 for all mobile equipment
- Production volume increase will depend on recycle rates
- "Markets exist today to produce, deliver and recycle all of the proposed containers up to and including the IBC sizes". - Barry Lonsdale, Terra Industries, 3/1/07
- The range of units corresponds to the low and high urea consumption forecasts

Note: 264 gallon (1000L) tote was used as estimate based on European experience, other sizes may be applicable to NA market Source: EMA Study 2006, Barry Lonsdale - Terra Industries Document Code: D.5535

To ensure urea quality, refillable intermediate storage containers will need to be identified for the storage and transport of urea

- These containers will likely be prevalent in the distribution of urea to the nonroad market
- Intermediate storage containers are likely to be used to deliver small volumes to vehicles at high volume prices
- In all urea pathways other than the retail bottle, an intermediate container would likely be needed:
 - The large farmer with on-site storage will need to bring urea to the equipment from the tote or barrel stored at the garage
 - The jobber (independent or company owned) will need to store urea on the fuel truck in a container smaller than a 55 gallon drum
 - The smaller fleet owner will need to transport urea from the point of purchase to the equipment
- Container volume will depend on if or how often the container will be refilled by the operator at a lower priced retail location, i.e. tank or stillage


The urea-SCR solution is projected to have an operating price advantage over alternative technologies that have a fuel economy penalty

- Annual cost analysis uses average population and use factors by market sector
- Assumes capital, replacement, and maintenance costs to be roughly equivalent for urea-SCR and competing technologies
- The fuel economy difference is estimated to be 5%

	Average Annual Cost Analysis							
	Agricutural Equipment	Construction and Mining	Industrial Machinery	Commercial Equipment	Forestry Equipment	Generators		
Urea Consumption %	2% (High scenario consumption)							
Average Urea Cost \$/gal	\$2-34 - \$4.25 (On-road retail average price vs. Nonroad average price)							
Projected Urea Cost \$/year/equipment	\$100 - \$180	\$230 - \$410	\$160 - \$280	\$120 - \$220	\$500 - \$900	\$100 - \$180		
Alternative Technology Fuel Economy Difference %	5 % (TIAX estimate)							
Ave. Diesel Cost \$/gal	\$1.89 - \$2.94 (EIA projected price in 2014 vs. Today's price)							
Alternative Technology Cost \$/year/equipment	\$200 - \$260	\$460 - \$600	\$320 - \$410	\$240 - \$320	\$1000 - \$1310	\$190 - \$260		

Implementation milestones for an SCR-urea infrastructure are identified as an extension of on-road milestones

The following acronyms are used throughout the executive summary

- AAM Alliance of Automotive Manufacturers
- ARB California Air Resources Board
- CDF Central Distribution Facility
- EMA Engine Manufacturers Association
- EPA US Environmental Protection Agency
- FOB Free On Board, delivered price
- HDD Heavy Duty Diesel
- HP -- Horsepower
- IBC Intermediate Bulk Container
- LDD Light Duty Diesel
- MMgal Million gallons
- NR Nonroad
- SCR Selective Catalytic Reduction
- UST/AST Underground/Above-ground Storage Tank

